搜索
解决方案
SOLUTION
制药/生物制药
样品:原料药
检测项:鉴别
黄酮类化合物广泛存在于自然界的植物中,属植物次生代谢产物,已知化合物种类高达有9000多种。根据三碳键结构的氧化程度,B环的连接位置等特点,黄酮类化合物可以分黄酮、黄酮醇、黄烷酮、异黄酮、橙酮等十几个类别。本次应用案例为黄酮醇类化合物的分离纯化方法分享,化合物的结构式如图1。三泰的应用工程师使用SW-8201-025-IR无定形C18配合快速液相制备系统SepaBeanTM machine Ⅱ 成功对五种黄酮醇类化合物进行了分离。
样品:原料药
检测项:含量测定
苯二氮卓类药物是一种常用的处方药,结构式如图1所示。最常用于治疗焦虑症和恐慌症。有时它也用于治疗癫痫发作,甚至可以用于酒精和药品戒断。然而在苯二氮卓类化合物的合成过程中,副产物的去除对于获得高纯度的该化合物的成功至关重要。自动化快速色谱是研究规模最有效的纯化技术之一,该方法同样也可以应用于规模化生产。
样品:原料药
检测项:含量测定
糖类化合物是由碳、氢、氧三元素组成的有机物。从化学结构上看,糖类是多羟基醛酮以及它们的多聚体,在化学式的表现上类似于“碳”与“水”的聚合,故又称碳水化合物,根据其结构不同,可分为单糖、双糖和多糖。糖类化合物具有众多的用途,涵盖了食品、医药、能源、工业等多个领域。它们不仅在食品工业中用于调味和增加口感,还在医药领域用于药物生产和治疗疾病,同时也是能源和工业生产中的重要原料。糖类化合物的广泛应用为人类的生活带来了便利,也推动了相关产业的发展。 近年来糖类化合物的研究有两个方向: ①化学家致力于糖类化合物的人工合成,这主要是为社会发展作长远打算,使人类食物将有可能逐步摆脱对农业的依赖。②研究糖类化合物与生命的关系,因为在生命体内糖与蛋白质、核酸常不可分离。 糖类化合物分离纯化检测由于缺乏发色基团,导致其无紫外吸收或紫外吸收很弱,常规快速液相制备色谱系统通常只配备紫外 (UV) 检测器,不能检测缺乏发色基团的目标化合物。而蒸发光散射检测器(Evaporative Light-scattering Detector)是通用型检测器,可以检测挥发性低于流动相的化合物,特别是没有紫外吸收的有机物质。本案例主要探讨使用SepaBean machine快速液相制备色谱系统搭配ELSD检测器(蒸发光散射检测器)对糖类化合物进行制备纯化,为糖类化合物的制备纯化提供了一种可行的方案。
样品:原料药
检测项:含量测定
有机光电材料是指具有光电转换功能、光电活性的有机材料。广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。有机π-共轭材料具有柔性、易修饰以及可大面积制备的特点,在有机电致发光器件、有机场效应晶体管、有机光伏电池以及有机传感等领域具有广阔的应用前景,因此引起了科学家们的广泛关注。 引入杂原子是实现有机π-共轭材料高性能化和多功能化的重要方式。利用杂原子与π-共轭体系间特殊的轨道相互作用及其自身空间结构上的特点,能够有效地调控有机光电材料的前线分子轨道能级、发光颜色、发光效率和激发态寿命等。引入硼原子进行有机π-共轭材料的修饰即为其中的典型代表,本篇主要介绍了含硼有机光电材料类样品的分离纯化方法,为光电材料合成产物的分离纯化提供了一种高效、快速且经济的解决方案。
样品:原料药
检测项:纯度
脂质体(liposome)是一种人工膜,是由卵磷脂和神经酰胺等制得的脂质体(空心),具有的双分子层结构与皮肤细胞膜结构相同。脂质体具有靶向性和淋巴定向性、缓释作用、降低药物毒性以及提高稳定性等特点,使脂质体具有广泛的应用。主要应用于转基因、药物递送,还可用作将染料递送至纺织品、杀虫剂至植物、酶和营养补充剂至食物以及化妆品至皮肤的载体等,具有广阔的应用领域。本案例中主要以来自某生物医药公司的脂质体样品为例,对其分离纯化方法进行简单的介绍。
样品:疫苗
检测项:含量测定
核酸药物以其疗效显著、开发周期短成为临床用药和新药研发市场的热点,而在药物研发阶段,样品的纯度需要符合要求,而在纯化环节,由于纯化工艺路径的差异,一般有两种方法可供选择。反相色谱法和离子交换层析法,而本文主要介绍了其中一种,反相色谱法。
样品:原料药
检测项:含量测定
当大家在做分离纯化时遇到水溶性较好的样品首先会采用什么分离纯化方法进行分离呢?这里小编主要讲一些个人小经验,通常小编会优先选择C18 色谱柱进行尝试,因为该色谱柱具有更好的普适性,可解决80%左右的分离纯化任务,并且具有令人满意的分离度,因此成为最广泛应用的分离纯化方法,但它有自己的短板即采用高比例水相作为流动相时会导致疏水塌陷现象,使色谱柱瞬间保留能力下降甚至无保留作用,当遇到这种情况时小编一般会采用C18 AQ柱进行再次尝试。
样品:其他
检测项:含量测定
在药物研发过程中,对药物中的杂质含量控制是药物质量控制的关键,而对杂质控制的核心是对药物中每一个杂质的活性逐一制定质量控制限度,这就要求对该药物中所有杂质进行分离纯化、结构确证并进行相关测试。
样品:原料药
检测项:含量测定
目前对大极性化合物的研究在医药、天然产物、生化、食品安全等方面的应用逐渐提升,对大极性化合物的纯化需求也越来越多。然而在色谱纯化中,最常用的反相模式对大极性组分的纯化有自己的短板——保留太弱,而亲水作用色谱(HILIC)则弥补了反相色谱的缺点,它可提高对极性物质的保留从而获得满意的纯化效果。
样品:原料药
检测项:前处理
正相色谱和反相色谱是Flash制备色谱常用的两种分离模式,被广泛应用于各类有机合成产物的分离纯化中。在正相色谱中,采用极性固定相(如带有二醇基、氨基或氰基的固定相及硅胶、三氧化二铝等)并结合使用非极性流动相(如正己烷等),根据分子的极性大小将其分开。由于正相色谱以吸附效应作为分离的基础,因此也被称为吸附色谱。而在反相色谱中,采用非极性固定相(如带有C18基团的硅胶等)配合极性流动相对样品进行分离。这两种分离模式基于不同的分离机理,因此在将两种分离模式联用时可称之为正交色谱分离模式,从而获得对复杂样品更高的分辨力和更好的分离效果。本文中以某合成药物中间体为样品,利用SepaFlash系列正相硅胶柱及反相C18柱联合使用,实现了对样品的高效分离纯化,获得了满足纯度要求的目标产物,为此类复杂样品的快速制备纯化提供了新的思路。
样品:化药制剂
检测项:含量测定, 其他
本文中待纯化的样品来自某制药公司,为氨基多环糖类物质,结构类似于氨基糖苷类抗生素,其极性很大,易溶于水,其分子结构式示意图参见图1,粗品纯度约为88%(HPLC分析结果)。对于此类大极性化合物的分离纯化,根据我们之前的制备纯化经验,样品分子在普通C18分离柱上的保留很弱,因此,考虑采用C18AQ柱对其进行分离纯化。
样品:原料药
检测项:含量测定
羧酸类化合物尤其是苯甲酸类化合物是许多活性药物成分(Active Pharmaceutical Ingredients, API)的关键中间体,例如解热镇痛药物阿司匹林等,具有广泛的应用价值。使用传统硅胶作为固定相的色谱柱来分离纯化这类化合物是一类难题。常州三泰科技有限公司的SepaFlash C18反相柱结合快速液相制备色谱系统SepaBean machine具有良好的分离性能。本文利用SepaFlash C18反相柱分离并纯化了两种强极性的苯甲酸类化合物(结构式如图 1所示),结果表明混合物样品得到了很好的分离,为此类具有一定极性与亲水能力的化合物的快速分离纯化提供了一种经济实用的解决方案。
样品:植物油脂和提取物
检测项:含量测定
在本文中,三泰科技的研发人员利用快速液相制备色谱系统SepaBean machine配合SepaFlash C18反相分离柱对红豆杉植物提取物进行了分离纯化,获得了满足制备需求的目标产品,可用于后续的进一步科学研究中,为此类天然产物的快速制备纯化提供了经济高效的解决方案。
样品:化药制剂
检测项:含量测定
随着生物技术与多肽合成技术的日臻成熟,越来越多的多肽药物被开发并应用于临床。因适应症广、安全性高且疗效显著,多肽药物已广泛应用于肿瘤、肝炎、糖尿病、艾滋病等疾病的预防、诊断和治疗,具有广阔的开发前景[1]。在多肽药物的制备方法中,固相合成法具有产率较高且能够实现自动化等优点。然而,其缺点也十分明显,即每步中间产物不能纯化,且最终产物必须经过可靠的分离手段进行纯化。常用的多肽分离纯化方法包括离子交换色谱法(IEC)和反相高效液相色谱法(RP-HPLC)等,这些方法存在样品载量低、分离介质价格昂贵、分离设备复杂且成本高昂等缺点。本文以胸腺五肽为样品,通过SepaFlash Bio C18反相柱与SepaBean machine联用,成功地实现单次进样即可获得高纯度(>94%)的多肽产品,为此类小分子多肽样品的分离纯化提供了一种高效、快速且成本低廉的解决方案。
样品:化药制剂
检测项:含量测定
在本应用案例中,样品分子结构中含有噻嗪类母体结构,普通正相硅胶柱或反相C18 柱均不适合对其进行分离纯化,三泰科技的应用工程师利用SepaFlash HILIC ARG柱配合快速液相制备色谱系统SepaBean® machine成功对其进行了分离,获得了满足纯度要求的目标产物,为此类样品的分离纯化提供了便捷高效的解决方案。
联系我们:
客服电话:400-069-8756
企业名称:常州三泰科技有限公司
企业地址:常州市新北区庆阳路78号 联系人:仇伟 邮编:213125
主营产品:
Copyright©2025 常州三泰科技有限公司 苏ICP备11083144号-8 技术支持:仪器信息网